Anisotropic Kernels for Coordinate-Based Meta-Analyses of Neuroimaging Studies
نویسندگان
چکیده
Peak-based meta-analyses of neuroimaging studies create, for each study, a brain map of effect size or peak likelihood by convolving a kernel with each reported peak. A kernel is a small matrix applied in order that voxels surrounding the peak have a value similar to, but slightly lower than that of the peak. Current kernels are isotropic, i.e., the value of a voxel close to a peak only depends on the Euclidean distance between the voxel and the peak. However, such perfect spheres of effect size or likelihood around the peak are rather implausible: a voxel that correlates with the peak across individuals is more likely to be part of the cluster of significant activation or difference than voxels uncorrelated with the peak. This paper introduces anisotropic kernels, which assign different values to the different neighboring voxels based on the spatial correlation between them. They are specifically developed for effect-size signed differential mapping (ES-SDM), though might be easily implemented in other meta-analysis packages such as activation likelihood estimation (ALE). The paper also describes the creation of the required correlation templates for gray matter/BOLD response, white matter, cerebrospinal fluid, and fractional anisotropy. Finally, the new method is validated by quantifying the accuracy of the recreation of effect size maps from peak information. This empirical validation showed that the optimal degree of anisotropy and full-width at half-maximum (FWHM) might vary largely depending on the specific data meta-analyzed. However, it also showed that the recreation substantially improved and did not depend on the FWHM when full anisotropy was used. Based on these results, we recommend the use of fully anisotropic kernels in ES-SDM and ALE, unless optimal meta-analysis-specific parameters can be estimated based on the recreation of available statistical maps. The new method and templates are freely available at http://www.sdmproject.com/.
منابع مشابه
Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty.
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former i...
متن کاملNeural Correlates of Disturbed Emotion Processing in Borderline Personality Disorder: A Multimodal Meta-Analysis.
BACKGROUND Disturbances in the processing and regulation of emotions are core symptoms of borderline personality disorder (BPD). To further elucidate neural underpinnings of BPD, the present meta-analysis summarizes functional neuroimaging findings of emotion processing tasks, as well as structural neuroimaging findings, and investigates multimodally affected brain regions. METHODS Combined c...
متن کاملThe Influence of Study-Level Inference Models and Study Set Size on Coordinate-Based fMRI Meta-Analyses
Given the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between fal...
متن کاملMeta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies
With the rapid growth of neuroimaging research and accumulation of neuroinformatic databases the synthesis of consensus findings using meta-analysis is becoming increasingly important. Meta-analyses pool data across many studies to identify reliable experimental effects and characterize the degree of agreement across studies. Coordinate-based meta-analysis (CBMA) methods are the standard approa...
متن کاملANIMA: A data-sharing initiative for neuroimaging meta-analyses
Meta-analytic techniques allow cognitive neuroscientists to pool large amounts of data across many individual task-based functional neuroimaging experiments. These methods have been aided by the introduction of online databases such as Brainmap.org or Neurosynth.org, which collate peak activation coordinates obtained from thousands of published studies. Findings from meta-analytic studies typic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014